Fantom Tag

Schulung - IBM 0A079G - Introduction to Machine Learning Models Using IBM SPSS Modeler (V18.2)

  • Live Online oder Präsenz
DURCHFÜHRUNG MIT TERMIN
Dauer
2 Tage (16 Stunden)

Preis ab
1.600,00 € netto
1.904,00 € inkl. 19% MwSt.

Nr.
30156
Jetzt buchen
TERMIN UND ORT NACH ABSPRACHE
Dauer
2 Tage (16 Stunden)


Nr.
30156
On-demand Training
Sind Sie an diesem Thema interessiert?
Unsere Experten entwickeln Ihr individuell angepasstes Seminar!

Overview

This course provides an introduction to supervised models, unsupervised models, and association models. This is an application-oriented course and examples include predicting whether customers cancel their subscription, predicting property values, segment customers based on usage, and market basket analysis.

Lesen Sie mehr
Zielgruppe

Wer sollte teilnehmen:

Zielgruppe

Audience

  • Data scientists
  • Business analysts
  • Clients who want to learn about machine learning models

Voraussetzungen

Prerequisites

  • Knowledge of your business requirements
Trainingsprogramm

Trainingsprogramm

Course Outline

  • Introduction to machine learning models
  • Taxonomy of machine learning models
  • Identify measurement levels
  • Taxonomy of supervised models
  • Build and apply models in IBM SPSS Modeler

 

Supervised models: Decision trees - CHAID

  • CHAID basics for categorical targets
  • Include categorical and continuous predictors
  • CHAID basics for continuous targets
  • Treatment of missing values

 

Supervised models: Decision trees - C&R Tree 

  • C&R Tree basics for categorical targets
  • Include categorical and continuous predictors
  • C&R Tree basics for continuous targets
  • Treatment of missing values
  • Evaluation measures for supervised models
  • Evaluation measures for categorical targets
  • Evaluation measures for continuous targets

 

Supervised models: Statistical models for continuous targets - Linear regression

  • Linear regression basics
  • Include categorical predictors
  • Treatment of missing values
  • Supervised models: Statistical models for categorical targets - Logistic regression
  • Logistic regression basics
  • Include categorical predictors
  • Treatment of missing values

 

Association models: Sequence detection

  • Sequence detection basics
  • Treatment of missing values

 

Supervised models: Black box models - Neural networks

  • Neural network basics
  • Include categorical and continuous predictors
  • Treatment of missing values

 

Supervised models: 

  • Black box models - Ensemble models
  • Ensemble models basics
  • Improve accuracy and generalizability by boosting and bagging
  • Ensemble the best models

 

Unsupervised models: K-Means and Kohonen

  • K-Means basics
  • Include categorical inputs in K-Means
  • Treatment of missing values in K-Means
  • Kohonen networks basics
  • Treatment of missing values in Kohonen

 

Unsupervised models: TwoStep and Anomaly detection

  • TwoStep basics
  • TwoStep assumptions
  • Find the best segmentation model automatically
  • Anomaly detection basics
  • Treatment of missing values

 

Association models: Apriori

  • Apriori basics
  • Evaluation measures
  • Treatment of missing values

 

  • Preparing data for modeling
  • Examine the quality of the data
  • Select important predictors
  • Balance the data

Objective

  • Introduction to machine learning models
  • Taxonomy of machine learning models
  • Identify measurement levels
  • Taxonomy of supervised models
  • Build and apply models in IBM SPSS Modeler 

 

Supervised models: Decision trees - CHAID

  • CHAID basics for categorical targets
  • Include categorical and continuous predictors
  • CHAID basics for continuous targets
  • Treatment of missing values 

 

Supervised models: Decision trees - C&R Tree 

  • C&R Tree basics for categorical targets
  • Include categorical and continuous predictors
  • C&R Tree basics for continuous targets
  • Treatment of missing values 
  • Evaluation measures for supervised models
  • Evaluation measures for categorical targets
  • Evaluation measures for continuous targets 

 

Supervised models: Statistical models for continuous targets - Linear regression

  • Linear regression basics
  • Include categorical predictors
  • Treatment of missing values 
  • Supervised models: Statistical models for categorical targets - Logistic regression
  • Logistic regression basics
  • Include categorical predictors
  • Treatment of missing values

 

Association models: Sequence detection

  • Sequence detection basics
  • Treatment of missing values

 

Supervised models: Black box models - Neural networks

  • Neural network basics
  • Include categorical and continuous predictors
  • Treatment of missing values  

 

Supervised models: 

  • Black box models - Ensemble models
  • Ensemble models basics
  • Improve accuracy and generalizability by boosting and bagging
  • Ensemble the best models  

 

Unsupervised models: K-Means and Kohonen

  • K-Means basics
  • Include categorical inputs in K-Means
  • Treatment of missing values in K-Means
  • Kohonen networks basics
  • Treatment of missing values in Kohonen  

 

Unsupervised models: TwoStep and Anomaly detection

  • TwoStep basics
  • TwoStep assumptions
  • Find the best segmentation model automatically
  • Anomaly detection basics
  • Treatment of missing values  

 

Association models: Apriori

  • Apriori basics
  • Evaluation measures
  • Treatment of missing values

 

  • Preparing data for modeling
  • Examine the quality of the data 
  • Select important predictors 
  • Balance the data
Schulungsmethode

Schulungsmethode

presentation, discussion, hands-on exercises

Weitere Informationen

Weitere Informationen

Sessions

    Schulung - IBM 0A079G - Introduction to Machine Learning Models Using IBM SPSS Modeler (V18.2)